Sheet 4

1. Deduce (afresh) the 'Weak Nullstellensatz':

- if E is a finitely generated F-algebra where $E \supseteq F$ are fields, then $(E: F)$ is finite
from the 'Noether Normalization Lemma'.

2. (i) Let F be an algebraically closed field. Show that $J\left(F\left[t_{1}, \ldots, t_{k}\right]\right)=0$ (without quoting a general theorem about the Jacobson property of algebras!)
(ii) Show that if $R \subseteq S$ is an integral ring extension then $J(S) \cap R=J(R)$ (cf. sheet 3 q. 4(i)). Deduce that if, in addition, S is an integral domain, then $J(S)=0$ if and only if $J(R)=0$.
(iii) Now let F be an arbitrary field. Using the Noether Normalization Lemma, deduce that every finitely generated F-algebra is a Jacobson ring.
3. (i) Prove that \mathbb{Q} is not finitely generated as a \mathbb{Z}-algebra.
(ii) Let F be a field, and suppose that F is finitely generated as a \mathbb{Z}-algebra. Prove that $\operatorname{char}(F) \neq 0$. (Hint: Suppose that F has characteristic 0. Consider the three rings $\mathbb{Z} \subseteq \mathbb{Q} \subseteq F$.)
(iii) Let S be a finitely generated \mathbb{Z}-algebra and M a maximal ideal of S. Prove that S / M is finite.
4. Let R be a subring of a field E and Y a multiplicatively closed subset of R with $1 \in Y$ and $0 \notin Y$. Let S be the integral closure of R in E. Prove that the integral closure of $R Y^{-1}$ in E is $S Y^{-1}$.

An integral domain R is said to be integrally closed if R is its own integral closure in its field of fractions.
5. Let R be an integrally closed integral domain with field of fractions F, and $E \supseteq F$ an algebraic field extension. Show that for $a \in E$ the following are equivalent: (a) a is integral over R, (b) the (monic) minimal polynomial of a over F lies in $R[t]$. [Hint: consider a suitable splitting field.]

Does this necessarily hold if R is not integrally closed?
6. Let R be a Noetherian local integral domain, i.e. R has a unique maximal ideal $P \neq 0$. Assume (a) $h(P)=1$ (see below) and (b) R is integrally closed. Prove that R is a PID as follows (or otherwise!)
(i) Let $0 \neq a \in P$. Show that for some $n \geq 1$ we have $P^{n-1} \nsubseteq a R$ and $P^{n} \subseteq a R$ (where $P^{0}=R$).

Let $b \in P^{n-1} \backslash a R$ and put $y=a^{-1} b$. Show that if $y P \subseteq P$ then $y \in R$; deduce that in fact $y P \nsubseteq P$ (Hint: consider the action of y on the R-module $\left.a^{-1} P\right)$.
(ii) Now deduce (a) that $y P=R$ and hence (b) that P is a principal ideal.
(iii) Let $0 \neq I$ be a proper ideal of R. Prove that $I=P^{n}$ for some n. (Hint: show first that there is a maximal n for which $I \subseteq P^{n}$.)

Note: $h(P)$ is the maximal length n of a chain of prime ideals $P_{0}<P_{1}<\ldots<$ $P_{n}=P$ (allowing $P_{0}=0$ iff R is an ID).
$\operatorname{dim} R$ is the supremum of $h(P)$ over all prime ideals P (or all maximal ideals, of course).
7. Let R be a ring (not necessarily Noetherian). Let P be a prime ideal of $S=R[t]$ with $t \in P$. Show that if $h(P / t S)$ is finite then $h(P)>h(P / t S)$. [Hint: show that if Q is a prime ideal of R then $Q S$ is prime in S].

Deduce that if $\operatorname{dim} R$ is finite then $\operatorname{dim}(S)>\operatorname{dim} R$.

