
Sheet 4

1. Deduce (afresh) the ‘Weak Nullstellensatz’:

• if E is a finitely generated F -algebra where E ⊇ F are fields, then (E : F )
is finite

from the ‘Noether Normalization Lemma’.

2. (i) Let F be an algebraically closed field. Show that J(F [t1, . . . , tk]) = 0
(without quoting a general theorem about the Jacobson property of algebras!)

(ii) Show that if R ⊆ S is an integral ring extension then J(S) ∩ R = J(R)
(cf. sheet 3 q. 4(i)). Deduce that if, in addition, S is an integral domain, then
J(S) = 0 if and only if J(R) = 0.

(iii) Now let F be an arbitrary field. Using the Noether Normalization
Lemma, deduce that every finitely generated F -algebra is a Jacobson ring.

3. (i) Prove that Q is not finitely generated as a Z-algebra.
(ii) Let F be a field, and suppose that F is finitely generated as a Z-algebra.

Prove that char(F ) 6= 0. (Hint : Suppose that F has characteristic 0. Consider
the three rings Z ⊆ Q ⊆ F .)

(iii) Let S be a finitely generated Z-algebra and M a maximal ideal of S.
Prove that S/M is finite.

4. Let R be a subring of a field E and Y a multiplicatively closed subset of
R with 1 ∈ Y and 0 /∈ Y . Let S be the integral closure of R in E. Prove that
the integral closure of RY −1 in E is SY −1.

An integral domain R is said to be integrally closed if R is its own integral
closure in its field of fractions.

5. Let R be an integrally closed integral domain with field of fractions F ,
and E ⊇ F an algebraic field extension. Show that for a ∈ E the following are
equivalent: (a) a is integral over R, (b) the (monic) minimal polynomial of a
over F lies in R[t]. [Hint : consider a suitable splitting field.]

Does this necessarily hold if R is not integrally closed?

6. Let R be a Noetherian local integral domain, i.e. R has a unique maximal
ideal P 6= 0. Assume (a) h(P ) = 1 (see below) and (b) R is integrally closed.
Prove that R is a PID as follows (or otherwise!)

(i) Let 0 6= a ∈ P . Show that for some n ≥ 1 we have Pn−1 * aR and
Pn ⊆ aR (where P 0 = R).

Let b ∈ Pn−1 r aR and put y = a−1b. Show that if yP ⊆ P then y ∈ R;
deduce that in fact yP * P (Hint : consider the action of y on the R-module
a−1P ).
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(ii) Now deduce (a) that yP = R and hence (b) that P is a principal ideal.
(iii) Let 0 6= I be a proper ideal of R. Prove that I = Pn for some n. (Hint :

show first that there is a maximal n for which I ⊆ Pn.)

Note: h(P ) is the maximal length n of a chain of prime ideals P0 < P1 < . . . <
Pn = P (allowing P0 = 0 iff R is an ID).

dimR is the supremum of h(P ) over all prime ideals P (or all maximal ideals,
of course).

7. Let R be a ring (not necessarily Noetherian). Let P be a prime ideal
of S = R[t] with t ∈ P . Show that if h(P/tS) is finite then h(P ) > h(P/tS).
[Hint : show that if Q is a prime ideal of R then QS is prime in S].

Deduce that if dimR is finite then dim(S) > dimR.

8. Let Q be a maximal ideal of R = F [t1, . . . , tn] where F is a field. (i) Show
that h(Q) ≥ n. (ii) Show that Q can be generated by n elements. (Hints. (i):

consider the integral extension R ⊆ R̂ = F̂ [t1, . . . , tn] where F̂ is the algebraic
closure of F . (ii): Note that R/Q = F (t1, . . . , tn) in obvious notation. Let q be
the min. poly. of t1 over F and set Q1 = q(t1)R. Now consider Q/Q1 as a max.
ideal of R/Q1, an (n−1)-generator algebra over the field F1 = F [t1]/q(t1)F [t1].)

Supplementary questions

9. Let R = F [ti | i ∈ N] be the polynomial ring in infinitely many variables
over a field F . Partition N into finite non-empty subsets Nn, so N is the disjoint
union

N =

∞⋃

n=1

Nn.

For each n ≥ 1 let
Pn =

∑

i∈Nn

tiR.

Put Y = Rr
⋃

∞

n=1
Pn.

(i) Show that each Pn is a prime ideal, and that Y is multiplicatively closed.
(ii) Let X denote the set of all non-identity monomials, i.e. products v =

te1i1 . . . tekik , and put Xn = X ∩ Pn, so v ∈ Xn iff ij ∈ Nn for some j. Let
f =

∑
v∈V c(v)v where V = V (f) is a finite set of monomials and 0 6= c(v) ∈ F .

Show that
f ∈ Pn ⇐⇒ V (f) ⊆ Xn.

Put
M(f) = {n | V (f) ∩Xn 6= ∅}.

2


